Mathematik

Fachprofil

Zentrale Aufgabe des Mathematikunterrichts am Gymnasium ist es, dass die Schülerinnen und Schüler sich im Rahmen des Aufbaus mathematischer Kompetenzen konkrete mathematische Kenntnisse und Arbeitsweisen aneignen und […] auch allgemeinere Einsichten in Prozesse des Denkens und der Entscheidungsfindung gewinnen, die für eine aktive und verantwortungsbewusste Mitgestaltung der Gesellschaft von Bedeutung sind. Dabei wird […] auch deutlich, dass Mathematik ein hilfreiches Werkzeug zur Analyse und zur Erkenntnisgewinnung sein kann […], und dass sie z. B. wegen ihrer ästhetischen Komponente auch einen Wert an sich darstellt.

Kennzeichen mathematischer Arbeitsweise sind präziser Sprachgebrauch, Entwicklung klarer Begriffe, folgerichtige Gedankenführung und Argumentation, systematisches Vorgehen sowie das Erfassen von Zusammenhängen. Durch Übung in diesen Arbeitsweisen setzen sich die Schülerinnen und Schüler intensiv mit dem eigenen Denken auseinander und erweitern ihr Abstraktionsvermögen. […].

Daneben wird durch die Beschäftigung mit mathematischen Fragestellungen die grundsätzliche Bereitschaft der Schülerinnen und Schüler zu geistiger Betätigung ausgebildet und ihre Konzentrationsfähigkeit gefördert. Beim Lösen mathematischer Probleme sind Ausdauer, Durchhaltevermögen und Zielstrebigkeit erforderlich – Eigenschaften, die nicht nur im täglichen Leben, sondern auch für die erfolgreiche Beschäftigung mit Wissenschaft benötigt werden. Dabei lernen die Schülerinnen und Schüler auch, sorgfältig und genau zu arbeiten, beispielsweise beim Zeichnen und Konstruieren oder beim Arbeiten mit Termen, und entwickeln Kreativität und Fantasie, etwa beim Aufstellen und Begründen von Vermutungen.

In den einzelnen Jahrgangsstufen setzen sich die Schülerinnen und Schüler im Wesentlichen mit den folgenden Fachinhalten auseinander:

  • Jahrgangsstufe 5
    natürliche und ganze Zahlen, Zählprinzip und Baumdiagramm, geometrische Grundbegriffe, Größen, Flächeninhalt, Schlussrechnung
  • Jahrgangsstufe 6
    rationale Zahlen, Prozentrechnung, Häufigkeiten, Daten und Diagramme, Flächeninhalt und Volumen
  • Jahrgangsstufe 7
    Terme mit Variablen, lineare Gleichungen, Laplace-Wahrscheinlichkeiten, Figurengeometrie
  • Jahrgangsstufe 8
    lineare und elementare gebrochen-rationale Funktionen, lineare Gleichungssysteme, Wahrscheinlichkeit verknüpfter Ereignisse, Kreis, Strahlensatz und Ähnlichkeit
  • Jahrgangsstufe 9
    reelle Zahlen, quadratische Gleichungen und Funktionen, Potenzfunktionen, Satz des Pythagoras, geometrische Aspekte der Trigonometrie (Sinus, Kosinus, Tangens), Raumgeometrie (Prisma, Zylinder, Pyramide, Kegel, Kugel), zusammengesetzte Zufallsexperimente
  • Jahrgangsstufe 10
    exponentielles Wachstum, Logarithmus, bedingte Wahrscheinlichkeit, funktionale Aspekte der Trigonometrie, Ausbau der Funktionenlehre (insbesondere ganzrationale und gebrochen-rationale Funktionen, Grenzwerte)
  • Jahrgangsstufen 11 und 12
    Differential- und Integralrechnung, spezielle Funktionstypen, Koordinaten- und Vektorgeometrie im Raum, Binomial- und Normalverteilung, beurteilende Statistik

Zusammenhang mit anderen Fächern:

Die Mathematik steht aufgrund ihrer Universalität in enger Beziehung zu einer Vielzahl anderer Disziplinen. Sie ist unverzichtbar für Naturwissenschaften, Technik und Wirtschaft, spielt aber auch beispielsweise in der Psychologie, Soziologie, Pädagogik oder in der Medizin eine wichtige Rolle. Dementsprechend gibt es auch in der Schule vielfältige Verknüpfungen der Mathematik mit anderen Fächern; insbesondere mit der Physik liegt bei einer Fülle von Themen eine enge Kooperation nahe. Mit dem Fach Informatik hat die Mathematik u. a. die Konzepte Algorithmus, Funktion und Graph sowie die Methoden des Abstrahierens und des Modellierens gemeinsam. Aber auch mit der Biologie und der Chemie bieten sich gemeinsame Unterrichtsvorhaben an. Bei der Zusammenarbeit mit den gesellschaftswissenschaftlichen Fächern stehen Diagramme und Graphiken sowie statistische Methoden im Vordergrund; das Fach Wirtschaft und Recht greift zudem etwa auf Elemente der Funktionenlehre zurück.

 

 (aus Fachprofil Mathematik, ISB)